Nanoparticle self-assembly at the interface of liquid crystal droplets.
نویسندگان
چکیده
Nanoparticles adsorbed at the interface of nematic liquid crystals are known to form ordered structures whose morphology depends on the orientation of the underlying nematic field. The origin of such structures is believed to result from an interplay between the liquid crystal orientation at the particles' surface, the orientation at the liquid crystal's air interface, and the bulk elasticity of the underlying liquid crystal. In this work, we consider nanoparticle assembly at the interface of nematic droplets. We present a systematic study of the free energy of nanoparticle-laden droplets in terms of experiments and a Landau-de Gennes formalism. The results of that study indicate that, even for conditions under which particles interact only weakly at flat interfaces, particles aggregate at the poles of bipolar droplets and assemble into robust, quantized arrangements that can be mapped onto hexagonal lattices. The contributions of elasticity and interfacial energy corresponding to different arrangements are used to explain the resulting morphologies, and the predictions of the model are shown to be consistent with experimental observations. The findings presented here suggest that particle-laden liquid crystal droplets could provide a unique and versatile route toward building blocks for hierarchical materials assembly.
منابع مشابه
Phase Transition-Driven Nanoparticle Assembly in Liquid Crystal Droplets
When nanoparticle self-assembly takes place in an anisotropic liquid crystal environment, fascinating new effects can arise. The presence of elastic anisotropy and topological defects can direct spatial organization. An important goal in nanoscience is to direct the assembly of nanoparticles over large length scales to produce macroscopic composite materials; however, limitations on spatial ord...
متن کاملGold metal liquid-like droplets.
Simple methods to self-assemble coatings and films encompassing nanoparticles are highly desirable in many practical scenarios, yet scarcely any examples of simple, robust approaches to coat macroscopic droplets with continuous, thick (multilayer), reflective and stable liquid nanoparticle films exist. Here, we introduce a facile and rapid one-step route to form films of reflective liquid-like ...
متن کاملHomeotropic nano-particle assembly on degenerate planar nematic interfaces: films and droplets.
A continuum theory is used to study the effects of homeotropic nano-particles on degenerate planar liquid crystal interfaces. Particle self-assembly mechanisms are obtained from careful examination of particle configurations on a planar film and on a spherical droplet. The free energy functional that describes the system is minimized according to Ginzburg-Landau and stochastic relaxations. The ...
متن کاملColloidal cholesteric liquid crystal in spherical confinement
The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal for...
متن کاملQuantum Chemical Investigations on C14C10-Branched-Chain Glucoside Isomers Towards Understanding Self-Assembly
Density Functional Theory (DFT) calculations have been carried out using a Polarizable Continuum Model (PCM) in an attempt to investigate the electro-molecular properties of branched-chain glucoside (C14C10-D-glucoside) isomers. The results showed that αconfiguration of pyranoside form is thermodynamically the most stable, while the solution should contain much more β...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 112 17 شماره
صفحات -
تاریخ انتشار 2015